
PLANE CONTACT PROBLEMS OF THE THEORY OF ELASTICITY 

FOR NONCLASSICAL REGIONS IN THE PRESENCE OF WEAR 

V. M. Aleksandrov and E. V. Kovalenko UDC 539.3 

In this paper an effective method is proposed for the solution of  plane contact  problems for nonclassical regions 
[1] in the presence of wear. The inertia forces arising from the motion of the punch [2, 3] are not  taken into account. 

1. Statement  of the Problem. It has been established experimentally [4, 5] that the rate of  wear is a function of 
shear forces and the averaged modulus of the velocity of sliding, where for abrasive wear we use, as a rule, the linear 
relation 

w = klV'~(x, t), (1.1) 

where k I is the coefficient of  proport ional i ty  between the work of  friction forces and the amount of material removed. 
Hence it follows that the displacement of  the punch in the direction perpendicular to the surface of  the region, as a result 
of  its wear, has the form 

t t 

v ,  = k~V S x (x, t) dt  -~ • S q (x, t) dt  (u = k l k zV) ,  (1.2) 
0 0 

where k 2 is the coefficient of  friction; q(x, t) is the contact  pressure. For  normal displacement of a punch of  width 2a, 
as a result of  the elastic deformation of  the region, we have the expression [ !] 

v = ~-~ q (~, t) K d~ ([ x I ~  a); 
- - a  

co 

~ - - X  

0 

where 0 is a certain combination of  elastic constants determined by the concrete problems. We assume that: 

1) the function L(u)u -~ is continuous, real, and even on the real axis; 

2) the function 

3) the function 

L (u) = A u  + 0 (u~  ( u - +  0), 

L ( u ) u - l > O  ( l u l < o o ) ;  (1.5) 

L..(u) = C 2 u  .2p[l _[_O(u_s)] 0t_+. oo) ' 0 . 2 5 < p < t ,  
u (1.6) 

A, C, p, s are constants, with s > p for p ~> 0.5, s > 1 - p for p < 0.5. 

The condit ion of contact  of  the punch with the region obviously has the form 

v -~- v .  = ?(t) + [3(t)x - - / ( x )  (lxl ~ a). (1.7) 

Here ~,(t) + ~(t)x is the rigid-body motion of  the punch under the action of  the force P(t) and the moment  M(t) applied to 
it; f(x) is the function describing the form of  the base of  the punch. 

Substituting (1.2), (1.3) into (1.7), we obtain the integral equation for the determination of the unknown contact 
stresses 

q ( ~ , t ) K  d ~ = n O D ? ( t ) ~ - [ ~ ( t ) x - - / ( x ) l - - g •  (1.8) 
- - a  0 

(Ixl~<a); 

P ( t ) =  f q ( ~ , t )  d~, M ( t ) =  S~q(~ , t )  d~. (1.9) 

Goiflg in (1.8), (1.9) to dimensionless variables and notat ion according to the expressions 

~'a = ~, x 'a  = x, ~, ~ ~/a, t =  at'/rr215 ?(t) = a? '( t ' ) ,  [3(t) = [~'(t'), 

[(x) = afl(x'), q(~, t) = O(p(~', t ') ,  P(t)  = aP' ( t ' ) ,  M( t )  = a~M'( t  ') 
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(primes will be omitted in the following), we obtain the integral equation of  the plane contact problem with wear 

1 t 

cp(g,t) K(~--ff)d~=,[,(t)W[~(t)x--,(:c),- ~(x , t )  dt ( ] x l ~  t); (1.10) 
- - 1  0 

1 1 

P(t)= S cP(x't) dx' M(t)= ~ x~(x,t) dx. 
-1 -x (1.11) 

Here and subsequently we assume 0 ~< t ~< T < oo, where the quantity T is sufficiently large but such that 7(t) and t3(0 
have the order of  displacements in the linear theory of  elasticity. 

We note that for t = 0 the integral equation (1.10) assumes the form, known from the theory of  static contact 
problems [ 11, 

1 

Before proceeding to the solution of  (1.10), we establish properties of  its kernel which are important in the follow- 
ing. 

The following lemma is proved in [6]. 

LEMMA. In the case y = (~ - x)X "1 -~ 0 the following estimates are valid: 

K(y) = O(lYl2p-~), p < 0 . 5 ;  K(g) = O(lnlyl), p = 0.5; 
K(y) = O(i), p > 0.5. 

For I g I > e > 0 the function K(y) is continuous and vanishes for I g [ -~ oo. 

With the inequality 
1 1 

- - 1  - - I  

arising from the lemma, taken into account, we have the following theorem. 

THEOREM 1. The operator 
1 

P 1  

acts from L2( -1 ,  1) into L2( -1 ,  1) completely continuously. 

Here L2( -1 ,  1) is a space of  functions summable on the segment [ - 1 ,  1] with square. 

We also note that the operator B~0, in view of  the representation (1.4), is self-adjoint. Therefore according to the 
general theory [71 of  self-adjoint, completely continuous operators in the Hilbert space, it has a countable set of nontrivial 

even eigenvalues ~02k(x) (k >~ 1) with eigenvalues a2k , and a countable set of  nontrivial odd eigenfunctions g:k+l (x)(k ~> 1) 

with eigenvalues e~k+l. At the same time all a i are real and f~11 ~ J~] ~ �9 �9 �9 ~ I~nl < =o, lira Lcz~[ ~ oo. 
~ --> eo 

In addition, with the expressions (1.4), (1.5) and results of [6] taken into account, we can easily prove the follow- 
ing theorem, 

THEOREM 2.The operatorB is positive definite in L2( -1 ,  1). From the latter it follows that all o~j > 0 (j >~ 1) and 

the system of eigenfunctions of  the operator B r is complete in L2( -1 ,  1). 

2. The Case of Linear Variation with Time of the Rigid Displacement of the Punch. Let the rigid displacement of 
the punch vary with time according to the law 

"r = % + vtt, ~(t) = I~0 + [~3- 

Side by side with Eq. (1.10) we consider 

[q)(~,t)_~(~,O)]K(~---X)d~-~n[.ht+~ltx] r ( lxl~<t ,  O~t~T)  (2.1) 
- -1  0 

and will seek its solution in the form 

q~ (x, t) = % (x) + % (x) + ~ [c~h (t) (P2u (x) + c~k+l (t) qsh+l (x)l; (2.2) 
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1 

- -1  

1 

~ 2 / t + l  ~ CP2k+I(~)K@-~)d~=(Peh+I(X) ([XI~:J', ]r 
_~ (2.4) 

Substituting (2.2) into (2.1), assuming 

% (x) = ~ 'h ,  ~ ( x )  = ~ x  (2.5) 

and equating in the resulting relation the coefficients of  the left and right sides at eigenfunctions of  the operator Bq of 
the same number, we obtain 

t ( 2 . 6 )  
~ h  ~ c~  (~) & + c ~  (t) = c2~ (0); 

0 

a2k+l ~c~+~(z) d~ +c~+~(t)=c~+l(O) ( k ~ t ,  O<.~t~r). (2.7) 
0 

Solving (2.6), (2.7), we find 

c~h (t) - -  c2h (0) e -~2k~, c~k+l (t) = c~h+l (0) e -%h+lt. (2.8) 

We consider next the even case, when fix) is an even function, ~3(t) ~- O, bearing in mind that for the odd case we 
can proceed completely analogously. 

We shall seek r in (2.3) in the form 

%k (x) = 2 a~)P[rn (x), (2.9) 
m = 0  

where {p~* (x)} is a system of  normed Legendre polynomials [7] closed in L2 ( - 1 ,  1). 

Expanding the function K(y) in a dual series of  these polynomials 

/=0 j=O 

and using the integral [8] 
I 

Pv, (x) cos uxdx ---- ( - -  t) n ~ "  Y 1 (u), 
-{-+~n 

0 

we represent the coefficients of the expansion in (2.10) in the form 

(2 .10)  

0 2 

Substituting (2.9), (2.10) into (2.3), using the orthogonali ty property of Legendre polynomials and equating the 
coefficients of  the right and left sides of the resulting relation at polynomials of  the same number, we have 

a2k ~ -(k)e a~ k) -,n m0~) = " ( ] = 0 , 1 , 2 , . . . ) .  (2.11) 
m = 0  

Using the results of the lemma and Theorem 1, we can show that the operator  standing on the teft side (2.11) acts 
in the space l~ and is there completely continuous for )~ ~ (0, ~ )  . Here 12 is a complete space of quadratically summabte 
sequences. 

Thus, to the infinite system (2.11) the theorem of Hilbert [9] about its solvability is applicable. For  there to exist 
a nontrivial solution of  the system, we equate its determinant to zero; we obtain an equation for finding a countable set of  

eigenvalues c~ek. Having determined C~2k, we find then a(m k), having expressed it in terms of  a(o k), 

(vT ,). - -  ~0 ~m = ( 2 . 1 2 )  
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As a result we have 

(ps~ (x) = a(o~')ap~ (x), apz ~ (x) ~ ~ b~)p~m (x) (k  ~ t). (2.13) 
?B~O 

We now choose the constants a (k) in (2.12), (2.13) from the norming condition of the eigenfunctions Czk(x) of  the 

operator B ~p, i.e., 

j d z  = E , = 
-1 ,~=o (2.14) 

(k ,n = 1,2,3~ . . . )  

(rr~ is the Kronecker symbol). 

After finding a(ok) from the system (2.14) we determine the sought eigenfunctions of  the operator B~a We now 

satisfy the integral equation (1.12) by appropriate choice of  a countable set of  constants %k(0)(k >~ 1). We assume that 

fix) ~ L2(--I ,I) ,  and expand it in a Fourier series of eigenfunctions of  the operator Bso 

I (x) = 2 hq~,i (x). (2.15) 

Taking into account (2.2), (2.8) and the relation 

k = l  

we obtain 

~(z,O) ~] ~- '2"a (h) �9 = i V  ?~ao + c ~  (0)] th~ (x). (2 .16)  
h = l  

Substituting (2.15), (2.16) into (1.12), using the orthogonality property of  the functions tpzk(x) and equating in the 

resulting expression the coefficients of the right and left sides at functions of the same number, we obtain 

c2k (0) = ~ p ' 2  a(0 k) (a2k?o - -  ~1) - -  ~ / h a ~  (k > t  t). (2 .17)  

(2.2). 

After determining %k(0) from (2.17) we construct the formal solution of the problem according to the expression 

At the same time from the expression (1.11) we find the force acting on the punch 

P (t) 2~71 + 2 -%ht P~e , 

1 

P~ = czk (0) ~ eps h (x) dx = V 2  a~h)c2k (0), 
- - 1  

(2.18) 

whence 

P(O)=nV2 ~ a=ha~oh) I V 2  a(oh'%--/hi, P(cc) =2z~qh. (2.19) 
h = l  

Thus, according to (2.19) the quantity 7 0 (the initial introduction of  the punch) is connected with the initial value 
of  the indenting force, while its final value depends only on the velocity of  the translatory motion of the punch 3,1 . 

Exactly in the same way M(,,o) = 21r/3131, i.e., depends only on the angular velocity of rotation of  the punch. 

Following [10], with the expressions (2.8), (2.17)-(2.19) taken into account, we can state that the series (2.2) con- 

verges in L2( -1 ,  1) uniformly with respect to t on [0, T] for all T > 0 and determines, consequently, the generalized 

solution of  the problem thus formulated in L : ( - I ,  1) X C(0, T). Here C(0, T) is the space of  continuous functions on 
[0, T]. 

Thus, the basic structure of the solution to Eq. (2.2) is (1.10). 

3. The Case of  Forces, Constant in Time, Pressing in the Punch. Let P = M = const. We assume here that the 
rigid-body motion of  the punch, as a consequence of  the wear of  the surface of  the region, varies with time according to 
the law 

= ~,he , 13 (t) = I~t + ~ 13~e - ~ + ~ ,  
h=O k~O 

(3.1) 
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where ak '  7,/3 are constants, a o = a~ = 0. Specification of 3`(0,/3(0 in the form (3.1) is justified by the fact that, as was 

shown in Sec. 2, for a sufficiently large t to certain constant values of  P and M there corresponds linear wear. 

According to Sec. 2, we shall seek the solution of  Eq. (1.10) in the form 

Ip (X, t)  = 2 [q)2k (5) e-~2ht-~ - q)2/~+l (x) e - ~ 2 h + l t  ] ( 3 . 2 )  
lk=O 
( a ~ = e o n s t ,  a o = ~ , = 0 ) .  

After substitution of  (3.1), (3.2) into (1.10) and equating the coefficients of  the left and right sides at t o, r (t - -  e-a2kt), 
( 1 -  e -%tt+lt.) , we obtain 

%(x) = a?, %@) = n[3z; (3.3) 
1 

1 

~2h-bl y ~2h+l(~)K(~-'~)d~'~-g~hO~2h+x x AC q)2k-t-I (x) 
-1 (3.5) 

(Izl<~i, k~>i). 

From (3.4), (3.5) it  is seen that we can find the solution of  the integral equation of Fredholm (in view of  the 
lemma) of the second kind of  the form 

(E - -  ~B)qD + a~g(x) = 0, (3.6) 

where the operator  B ~p is given by the expression (2.7), while g(x) = 3' or g(x) = fix. 

We note that in view of the properties of the operator  t ip ,  which are indicated in Sec. 2, Eq. (3.6) for almost all 
a is uniquely solvable in L2( -1  , 1). At  the same time X E (0, ~ ) .  

We subsequently shall consider only the even case, bearing in mind, that for the odd case all is done analogously. 
We note that 

1 

-- 1 h=O 
1 1 

P0 = p = .!' % (~) d~ = 2ay,  Ph = ~ %h (g) d~ = 0 
--1 --1 

( 3 . 7 )  

(k~>i). (3.8) 

We seek the solution of  Eq. (3.4) in the form 

~ , ,  (x) = :~ V~vh,~  (z), ,2~ (5) = E ~ P ~ ,  (5). (3.9) 
m==0 

Substituting (2.9), (3.9) into (3.4), using the orthogonali ty property of  Legendre polynomials and equating m the 
resulting relation the coefficients of  the right and left sides at polynomials of  the same number, we obtain 

a2, 2 a~)e~m( ~,1 - -  a(~ h)--- 60, (n = O, t ,  2 , . . . ) .  (3.10) 
fn== 0 

We note that in view of  (3.8), (3.9) 

1 
. (k) a(eh) Ph = S qo2~ (~) d~ = znyhcz~ha 0 = 0, = 0 ( k )  1). (3. I 1) 

--1 

The condition (3.1 i)  serves for the determination of the unknown quantities a2k. Indeed, from the system (3.10) 

we have "o~(k) = A1/A , where A is the determinant  of the system (3.10); Aa is the determinant which is obtained from A 

by replacing in it the first column with the elements {I, 0, 0 . . . .  , 0  . . . .  } . The determinant A~ is symmetrical;  there- 

fore its roots a = Or = 1, 2, ... ) are real. In addition, earlier it was mentioned that for sufficiently long time linear 

wear corresponds to the constant P and M; therefore the sums over the exponents in (3.1) must vanish for t ~ ~ .  Hence, 

in particular, it follows that  % ~> 0; in this we can convince ourselves directly by means of a subsequent computat ion cri- 

tenon [ 11 ]. For  each concrete problem we construct a collection of  principal minors of  the determinant A~. From their 

nonnegativeness follows in fact nonnegativeness of  the numbers ~2k(k ) 1). 
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TABLE 1 

tj eij (i) 

O0 t,20t68 
oi --0,16220 
02 --0,04062 
03 --0,00863 

t2 
t3 

. 22 

eij (t) 

0,74072 
--0,17450 
--0,02811 

0,44640 

, ,m  

+j eij (t) 

23 --0,12009 
33 0,30896 

Having determined the numbers Ot2k,, we then find from the nonhomogeneous system (3.10) -(k)(m = 1, 2 . . . .  ) and, t% 

in this way, construct the system of functions r (k >~ 1). We next find 

(h) * * 
r (x, O) = q)2~ (x) ---- r~ V 2  ~2h~ am P~m (X) + "~Po (X) . (3.1 2) 

h=O 1 

Then the constants 3,k(k >~ 1) need be determined from the condition that Eq. (1.12) is satisfied for t3(0) - 0. 

Representing fix) in the form f(x) = ~, hP~i (x ) ,  substituting (2.10), (3.12), and (1.12), we obta in  

a~h% (Z)P~i (x) - t -gg~ ~ e0i()~)P~j(x) ~ [V'g~(0)~om fr, lP,*~(x). (3.13) 
h = l  m=l  . i=0  J = 0  ra=0  

Having equated in the relation (3.13) the coefficients of the right and left sides at the Legendre polynomials of  the 
same number, we have 

Y, c~krk ~ emj (~.> a~ ) -t- ve0j (L> = [r (0) 6ol -- [ j2- ' /H 
k=t rn=l (3.14) 

( i = 0 , L 2  . . . .  ). 

Here 3'(0) can be taken as not depending on 3`k (k >~ l), for 

"/(0) = % q -  ~ 37~. (3.15) 
h = l  

After solution of the system (3.14) the functions qzk(X) will be completely determined and, consequently, the 

solution of  the problem r (x, t) will be determined. Since in the course of solution of the infinite algebraic system (3.14) 

the constant 3' is expressed in terms of  7(0), the indenting force P can be connected with the initial entry 7(0) of the 
punch into the layer. 

4. Numerical Examples. In the role of an example we considered the plane contact problem with wear for an 
elastic isotropic layer of thickness h, with elastic constants (G - shear modulus, v - Poisson's ratio), rigidly clamped along 
the base. Here fix) =- 0, 13(t) -~ O, k = h/a (a is the half-width of  the punch), 0 = G(1 - p ) - ] ,  

L (u) ---- 2(~ sh 2u -- 4u 
20  eh  2 u  ~ -  t -b  o~ -t- 4u  ~ ((~ = 3 - -  4 v ) .  

The coefficients eij(~k), entering into the infinite system, are computed with accuracy up to e = 10 -s for X = 1, 

u = 0.3 and are recorded in Table 1. 

In the case of linear variation with time of  the rigid-body displacement of the punch, the infinite system (2.11) 
will be solved by the reduction method, confining the analysis to the first three equations. For the determination of  
a2k we obtain an algebraic third-order equation, whence we find0q, ~4, c%, Accordingly we shall construct a system of 

functions ~2k(x) of  the form (2.13), (2.14). 

Determining the constants c2k(0) (k >~ 1) from (2.17) for fk -= 0, we construct the solution of the problem accord- 

ing to the expressions (2.8), (2.2). 

For the case of  forces pressing in the punch which are constant in time, the infinite system (3.10) will also be 
solved by the reduction method. Having taken in (3.10) the four first equations, we find the unknown numbers c~ 2, c~ 4, 

a6" Having constructed a system of functions ~2k(x) of  the form (3.3), (3.9) containing four arbitrary constants 3', 7] ,  

"Y2' 3'3, we determine the latter subsequentlY from the truncated infinite system (3.14). 

In Table 2 we have given the values of  the numbers a2k for the two problems, respectively, while in Table 3 we 

have given the values of the relative magnitude of the indenting force P(t)/P(0) for the first problem, and the relative 
magnitude of the translatory displacement of the punch for the second problern, computed according to the expressions 
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TABLE 2 

k I ' 2 '1 ' 

~2k 0,7979 
t,2t48 

t,2758 I 2,8433 
2,t72t 4,7050 

TABLE 3 

P(t)/P(O) 0,99 I 0,41 [ 0,18 I 0,08 I 0,03 ] 0,00 
?(t)/7(0 ) t,000 ~ 1,916 2,794 3,669 4,543 oo 

TABLE 4 

x 0 0,20 0,50 ] 0,80 1 0,90 1 1,00 
i 1 1 

(p(x, I)/7(0) 2,604 2,607 2,687 } ] 1 2 ' 9 2 7  2,977 2,929 

(p(x, 2)/7(0) 2,692 2,700 2,742 I I 1 2 ' 7 9 2  2,796 2,782 

r 4)t7o 
~(x, 4)/7(0) 

0,t2i 
2,739 

0,t18 
2,740 

0,I07. [ 0,07t0 [ 0,0553 I 0,0366 
2,744 2,748 2,748 2,747 

(2.18), (2.19), (3.1), (3.15). Here it was assumed that P(~)  = 0 in the case of the first problem and P(0) = 5..5270 [1]. 

In Table 4 we have presented the values of ~(x, 0/70 and ~(x, t)/T(0)for the first and second problem respectively 
for various values of t. We note that for t = 0 for both cases the solutions are determined by expressions of the work [ 1 ], 
while for t = ~ we have the relations 

(p(x, co) = :~7'(oo), P(oo) = 2n7'(oo), 

arising from the fact that 7(t) = 70 + 71 t , and also from the expressions (2.2), (3.1), (1.11) and cp(x, ~)/70 = O, qD(x, 
oo)/7(0) = 2.744. 
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